Integration of microfluidics with grating coupled silicon photonic sensors by one-step combined photopatterning and molding of OSTE.

نویسندگان

  • Carlos Errando-Herranz
  • Farizah Saharil
  • Albert Mola Romero
  • Niklas Sandström
  • Reza Zandi Shafagh
  • Wouter van der Wijngaart
  • Tommy Haraldsson
  • Kristinn B Gylfason
چکیده

We present a novel integration method for packaging silicon photonic sensors with polymer microfluidics, designed to be suitable for wafer-level production methods. The method addresses the previously unmet manufacturing challenges of matching the microfluidic footprint area to that of the photonics, and of robust bonding of microfluidic layers to biofunctionalized surfaces. We demonstrate the fabrication, in a single step, of a microfluidic layer in the recently introduced OSTE polymer, and the subsequent unassisted dry bonding of the microfluidic layer to a grating coupled silicon photonic ring resonator sensor chip. The microfluidic layer features photopatterned through holes (vias) for optical fiber probing and fluid connections, as well as molded microchannels and tube connectors, and is manufactured and subsequently bonded to a silicon sensor chip in less than 10 minutes. Combining this new microfluidic packaging method with photonic waveguide surface gratings for light coupling allows matching the size scale of microfluidics to that of current silicon photonic biosensors. To demonstrate the new method, we performed successful refractive index measurements of liquid ethanol and methanol samples, using the fabricated device. The minimum required sample volume for refractive index measurement is below one nanoliter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biosensing microsystem platform based on the integration of Si Mach-Zehnder interferometer, microfluidics and grating couplers

We have achieved the design, fabrication and packaging of microfluidic networks with photonic sensors for novel labon-chip platforms which incorporate the on-chip biosensing detection. As sensors, we used an integrated Mach-Zehnder interferometer (MZI) based on TIR waveguides (Si/SiO2/Si3N4) of micro/nanodimensions for evanescent field detection of biomolecular interactions onto the sensing are...

متن کامل

III–V-on-Silicon Photonic Integrated Circuits for Spectroscopic Sensing in the 2–4 μm Wavelength Range

The availability of silicon photonic integrated circuits (ICs) in the 2-4 μm wavelength range enables miniature optical sensors for trace gas and bio-molecule detection. In this paper, we review our recent work on III-V-on-silicon waveguide circuits for spectroscopic sensing in this wavelength range. We first present results on the heterogeneous integration of 2.3 μm wavelength III-V laser sour...

متن کامل

Single-step fabrication and characterization of photonic crystal biosensors with polymer microfluidic channels.

A method for simultaneously integrating label-free photonic crystal biosensor technology into microfluidic channels by a single-step replica molding process is presented. By fabricating both the sub-micron features of the photonic crystal sensor structure and the >10 microm features of a flow channel network in one step at room temperature on a plastic substrate, the sensors are automatically s...

متن کامل

Optimization of Plastic Injection Molding Process by Combination of Artificial Neural Network and Genetic Algorithm

Injection molding is one of the most important and common plastic formation methods. Combination of modeling tools and optimization algorithms can be used in order to determine optimum process conditions for the injection molding of a special part. Because of the complication of the injection molding process and multiplicity of parameters and their interactive effects on one another, analytical...

متن کامل

Low Gas Permeable and Non-absorbent Rubbery Oste+ for Pneumatic Microvalves

In this paper we introduce a new polymer for use in microfluidic applications, based on the off-stoichiometric thiol–ene-epoxy (OSTE+) polymer system, but with rubbery properties. We characterize and benchmark the new polymer against PDMS. We demonstrate that Rubbery OSTE+: has more than 90% lower permeability to gases compared to PDMS, has little to no absorption of dissolved molecules, can be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 21 18  شماره 

صفحات  -

تاریخ انتشار 2013